
Explore Features Enterprise Blog

HTTPS clone URL

You can clone with HTTPS or

Subversion.

the-art-of-command-line /

latest commit 8e14e43ef2

Master the command line, in one page

Missed in last commit.

jlevy authored a day ago

� README.md Missed in last commit. a day ago

� cowsay.png Add tmux. 11 days ago

� Sign up Sign inThis repository Search

390 9,446 521 � Watch ⋆ Star � Fork jlevy / the-art-of-command-line�

� Code

� Issues 14

	 Pull requests 20

 Pulse

� Graphs

https://github.com/jlevy/theartofcommandline.git

?

 Clone in Desktop

� Download ZIP

86 commits 1 branch 0 releases 18 contributors

�� � master +

� README.md

• Meta

• Basics

• Everyday use

• Processing files and data

• System debugging

• One-liners

• Obscure but useful

• More resources

• Disclaimer

Fluency on the command line is a skill often neglected or considered arcane, but it improves your

flexibility and productivity as an engineer in both obvious and subtle ways. This is a selection of notes

and tips on using the command-line that I've found useful when working on Linux. Some tips are

elementary, and some are fairly specific, sophisticated, or obscure. This page is not long, but if you

can use and recall all the items here, you know a lot.

Much of this originally appeared on Quora, but given the interest there, it seems it's worth using

Github, where people more talented than I can readily suggest improvements. If you see an error or

something that could be better, please submit an issue or PR! (Of course please review the meta

section and existing PRs/issues first.)

Scope:

The Art of Command Line

Meta

Pagina 1 di 9jlevy/the-art-of-command-line · GitHub

19/06/2015file:///C:/Users/luskin/AppData/Local/Temp/Low/LE9UMVSQ.htm

• This guide is both for beginners and the experienced. The goals are breadth (everything

important), specificity (give concrete examples of the most common case), and brevity (avoid

things that aren't essential or digressions you can easily look up elsewhere). Every tip is essential

in some situation or significantly saves time over alternatives.

• This is written for Linux. Many but not all items apply equally to MacOS (or even Cygwin).

• The focus is on interactive Bash, though many tips apply to other shells and to general Bash

scripting.

Notes:

• To keep this to one page, content is implicitly included by reference. You're smart enough to look

up more detail elsewhere once you know the idea or command to Google. Use apt

get / yum / dnf / brew (as appropriate) to install new programs.

• Use Explainshell to get a helpful breakdown of what commands, options, pipes etc. do.

• Learn basic Bash. Actually, type man bash and at least skim the whole thing; it's pretty easy to

follow and not that long. Alternate shells can be nice, but Bash is powerful and always available

(learning only zsh, fish, etc., while tempting on your own laptop, restricts you in many situations,

such as using existing servers).

• Learn at least one text-based editor well. Ideally Vim (vi), as there's really no competition for

random editing in a terminal (even if you use Emacs, a big IDE, or a modern hipster editor most of

the time).

• Learn about redirection of output and input using > and < and pipes using | . Learn about

stdout and stderr.

• Learn about file glob expansion with * (and perhaps ? and { ... }) and quoting and the

difference between double " and single ' quotes. (See more on variable expansion below.)

• Be familiar with Bash job management: & , ctrl-z, ctrl-c, jobs , fg , bg , kill , etc.

• Know ssh , and the basics of passwordless authentication, via sshagent , sshadd , etc.

• Basic file management: ls and ls l (in particular, learn what every column in ls l means),

less , head , tail and tail f (or even better, less +F), ln and ln s (learn the differences

and advantages of hard versus soft links), chown , chmod , du (for a quick summary of disk usage:

du sk *), df , mount .

• Basic network management: ip or ifconfig , dig .

• Know regular expressions well, and the various flags to grep / egrep . The i , o , A , and B

options are worth knowing.

• Learn to use aptget , yum , or dnf (depending on distro) to find and install packages. And make

sure you have pip to install Python-based command-line tools (a few below are easiest to install

via pip).

• In Bash, use Tab to complete arguments and ctrl-r to search through command history.

• In Bash, use ctrl-w to delete the last word, and ctrl-u to delete the whole line. Use alt-b and alt-f

to move by word, ctrl-k to kill to the end of the line, ctrl-l to clear the screen. See man readline

for all the default keybindings in Bash. There are a lot. For example alt-. cycles through previous

arguments, and alt-* expands a glob.

• To go back to the previous working directory: cd

• If you are halfway through typing a command but change your mind, hit alt-# to add a # at the

beginning and enter it as a comment (or use ctrl-a, #, enter). You can then return to it later via

command history.

Basics

Everyday use

Pagina 2 di 9jlevy/the-art-of-command-line · GitHub

19/06/2015file:///C:/Users/luskin/AppData/Local/Temp/Low/LE9UMVSQ.htm

• Use xargs (or parallel). It's very powerful. Note you can control how many items execute per

line (L) as well as parallelism (P). If you're not sure if it'll do the right thing, use xargs echo

first. Also, I{} is handy. Examples:

 find . name '*.py' | xargs grep some_function

 cat hosts | xargs I{} ssh root@{} hostname

• pstree p is a helpful display of the process tree.

• Use pgrep and pkill to find or signal processes by name (f is helpful).

• Know the various signals you can send processes. For example, to suspend a process, use kill

STOP [pid] . For the full list, see man 7 signal

• Use nohup or disown if you want a background process to keep running forever.

• Check what processes are listening via netstat lntp .

• See also lsof for open sockets and files.

• In Bash scripts, use set x for debugging output. Use strict modes whenever possible. Use set

e to abort on errors. Use set o pipefail as well, to be strict about errors (though this topic is a

bit subtle). For more involved scripts, also use trap .

• In Bash scripts, subshells (written with parentheses) are convenient ways to group commands. A

common example is to temporarily move to a different working directory, e.g.

do something in current dir

 (cd /some/other/dir && othercommand)

continue in original dir

• In Bash, note there are lots of kinds of variable expansion. Checking a variable exists: ${name:?

error message} . For example, if a Bash script requires a single argument, just write

input_file=${1:?usage: $0 input_file} . Arithmetic expansion: i=$(((i + 1) % 5)) .

Sequences: {1..10} . Trimming of strings: ${var%suffix} and ${var#prefix} . For example if

var=foo.pdf , then echo ${var%.pdf}.txt prints foo.txt .

• The output of a command can be treated like a file via <(some command) . For example, compare

local /etc/hosts with a remote one:

 diff /etc/hosts <(ssh somehost cat /etc/hosts)

• Know about "here documents" in Bash, as in cat <<EOF

• In Bash, redirect both standard output and standard error via: somecommand >logfile 2>&1 . Often,

to ensure a command does not leave an open file handle to standard input, tying it to the terminal

you are in, it is also good practice to add </dev/null .

• Use man ascii for a good ASCII table, with hex and decimal values. For general encoding info,

man unicode , man utf8 , and man latin1 are helpful.

• Use screen or tmux to multiplex the screen, especially useful on remote ssh sessions and to

detach and re-attach to a session. A more minimal alternative for session persistence only is

dtach .

• In ssh, knowing how to port tunnel with L or D (and occasionally R) is useful, e.g. to access

web sites from a remote server.

• It can be useful to make a few optimizations to your ssh configuration; for example, this

~/.ssh/config contains settings to avoid dropped connections in certain network environments,

use compression (which is helpful with scp over low-bandwidth connections), and multiplex

channels to the same server with a local control file:

Pagina 3 di 9jlevy/the-art-of-command-line · GitHub

19/06/2015file:///C:/Users/luskin/AppData/Local/Temp/Low/LE9UMVSQ.htm

 TCPKeepAlive=yes

 ServerAliveInterval=15

 ServerAliveCountMax=6

 Compression=yes

 ControlMaster auto

 ControlPath /tmp/%r@%h:%p

 ControlPersist yes

• A few other options relevant to ssh are security sensitive and should be enabled with care, e.g.

per subnet or host or in trusted networks: StrictHostKeyChecking=no , ForwardAgent=yes

• To get the permissions on a file in octal form, which is useful for system configuration but not

available in ls and easy to bungle, use something like

 stat c '%A %a %n' /etc/timezone

• For interactive selection of values from the output of another command, use percol .

• For interaction with files based on the output of another command (like git), use fpp

(PathPicker).

• For a simple web server for all files in the current directory (and subdirs), available to anyone on

your network, use: python m SimpleHTTPServer 7777 (for port 7777 and Python 2).

• To locate a file by name in the current directory, find . iname '*something*' (or similar). To find

a file anywhere by name, use locate something (but bear in mind updatedb may not have

indexed recently created files).

• For general searching through source or data files (more advanced than grep r), use ag .

• To convert HTML to text: lynx dump stdin

• For Markdown, HTML, and all kinds of document conversion, try pandoc .

• If you must handle XML, xmlstarlet is old but good.

• For JSON, use jq .

• For Excel or CSV files, csvkit provides in2csv , csvcut , csvjoin , csvgrep , etc.

• For Amazon S3, s3cmd is convenient and s4cmd is faster. Amazon's aws is essential for other

AWS-related tasks.

• Know about sort and uniq , including uniq's u and d options -- see one-liners below.

• Know about cut , paste , and join to manipulate text files. Many people use cut but forget

about join .

• Know that locale affects a lot of command line tools in subtle ways, including sorting order

(collation) and performance. Most Linux installations will set LANG or other locale variables to a

local setting like US English. But be aware sorting will change if you change locale. And know i18n

routines can make sort or other commands run many times slower. In some situations (such as

the set operations or uniqueness operations below) you can safely ignore slow i18n routines

entirely and use traditional byte-based sort order, using export LC_ALL=C .

• Know basic awk and sed for simple data munging. For example, summing all numbers in the

third column of a text file: awk '{ x += $3 } END { print x }' . This is probably 3X faster and 3X

shorter than equivalent Python.

• To replace all occurrences of a string in place, in one or more files:

 perl pi.bak e 's/oldstring/newstring/g' myfiles*.txt

Processing files and data

Pagina 4 di 9jlevy/the-art-of-command-line · GitHub

19/06/2015file:///C:/Users/luskin/AppData/Local/Temp/Low/LE9UMVSQ.htm

• To rename many files at once according to a pattern, use rename . For complex renames, repren

may help.

Recover backup files foo.bak > foo:

 rename 's/\.bak$//' *.bak

Full rename of filenames, directories, and contents foo > bar:

 repren full preservecase from foo to bar .

• Use shuf to shuffle or select random lines from a file.

• Know sort 's options. Know how keys work (t and k). In particular, watch out that you need

to write k1,1 to sort by only the first field; k1 means sort according to the whole line.

• Stable sort (sort s) can be useful. For example, to sort first by field 2, then secondarily by field

1, you can use sort k1,1 | sort s k2,2

• If you ever need to write a tab literal in a command line in Bash (e.g. for the -t argument to sort),

press ctrl-v [Tab] or write $'\t' (the latter is better as you can copy/paste it).

• For binary files, use hd for simple hex dumps and bvi for binary editing.

• Also for binary files, strings (plus grep , etc.) lets you find bits of text.

• To convert text encodings, try iconv . Or uconv for more advanced use; it supports some

advanced Unicode things. For example, this command lowercases and removes all accents (by

expanding and dropping them):

 uconv f utf8 t utf8 x '::AnyLower; ::AnyNFD; [:Nonspacing Mark:] >; ::AnyNFC; ' <

• To split files into pieces, see split (to split by size) and csplit (to split by a pattern).

• Use zless , zmore , zcat , and zgrep to operate on compressed files.

• For web debugging, curl and curl I are handy, or their wget equivalents, or the more modern

httpie .

• To know disk/cpu/network status, use iostat , netstat , top (or the better htop), and

(especially) dstat . Good for getting a quick idea of what's happening on a system.

• For a more in-depth system overview, use glances . It presents you with several system level

statistics in one terminal window. Very helpful for quickly checking on various subsystems.

• To know memory status, run and understand the output of free and vmstat . In particular, be

aware the "cached" value is memory held by the Linux kernel as file cache, so effectively counts

toward the "free" value.

• Java system debugging is a different kettle of fish, but a simple trick on Oracle's and some other

JVMs is that you can run kill 3 <pid> and a full stack trace and heap summary (including

generational garbage collection details, which can be highly informative) will be dumped to

stderr/logs.

• Use mtr as a better traceroute, to identify network issues.

• For looking at why a disk is full, ncdu saves time over the usual commands like du sh * .

• To find which socket or process is using bandwidth, try iftop or nethogs .

• The ab tool (comes with Apache) is helpful for quick-and-dirty checking of web server

performance. For more complex load testing, try siege .

• For more serious network debugging, wireshark , tshark , or ngrep .

System debugging

Pagina 5 di 9jlevy/the-art-of-command-line · GitHub

19/06/2015file:///C:/Users/luskin/AppData/Local/Temp/Low/LE9UMVSQ.htm

• Know about strace and ltrace . These can be helpful if a program is failing, hanging, or

crashing, and you don't know why, or if you want to get a general idea of performance. Note the

profiling option (c), and the ability to attach to a running process (p).

• Know about ldd to check shared libraries etc.

• Know how to connect to a running process with gdb and get its stack traces.

• Use /proc . It's amazingly helpful sometimes when debugging live problems. Examples:

/proc/cpuinfo , /proc/xxx/cwd , /proc/xxx/exe , /proc/xxx/fd/ , /proc/xxx/smaps .

• When debugging why something went wrong in the past, sar can be very helpful. It shows

historic statistics on CPU, memory, network, etc.

• For deeper systems and performance analyses, look at stap (SystemTap), perf , and sysdig .

• Confirm what Linux distribution you're using (works on most distros): lsb_release a

• Use dmesg whenever something's acting really funny (it could be hardware or driver issues).

A few examples of piecing together commands:

• It is remarkably helpful sometimes that you can do set intersection, union, and difference of text

files via sort / uniq . Suppose a and b are text files that are already uniqued. This is fast, and

works on files of arbitrary size, up to many gigabytes. (Sort is not limited by memory, though you

may need to use the T option if /tmp is on a small root partition.) See also the note about

LC_ALL above and sort 's u option (left out for clarity below).

 cat a b | sort | uniq > c # c is a union b

 cat a b | sort | uniq d > c # c is a intersect b

 cat a b b | sort | uniq u > c # c is set difference a b

• Use grep . * to visually examine all contents of all files in a directory, e.g. for directories filled

with config settings, like /sys , /proc , /etc .

• Summing all numbers in the third column of a text file (this is probably 3X faster and 3X less code

than equivalent Python):

 awk '{ x += $3 } END { print x }' myfile

• If want to see sizes/dates on a tree of files, this is like a recursive ls l but is easier to read than

ls lR :

 find . type f ls

• Use xargs or parallel whenever you can. Note you can control how many items execute per

line (L) as well as parallelism (P). If you're not sure if it'll do the right thing, use xargs echo

first. Also, I{} is handy. Examples:

 find . name '*.py' | xargs grep some_function

 cat hosts | xargs I{} ssh root@{} hostname

• Say you have a text file, like a web server log, and a certain value that appears on some lines,

such as an acct_id parameter that is present in the URL. If you want a tally of how many

requests for each acct_id :

 cat access.log | egrep o 'acct_id=[09]+' | cut d= f2 | sort | uniq c | sort rn

• Run this function to get a random tip from this document (parses Markdown and extracts an item):

One-liners

Pagina 6 di 9jlevy/the-art-of-command-line · GitHub

19/06/2015file:///C:/Users/luskin/AppData/Local/Temp/Low/LE9UMVSQ.htm

function taocl() {

 curl s https://raw.githubusercontent.com/jlevy/theartofcommandline/master/README.md

 pandoc f markdown t html |

 xmlstarlet fo html dropdtd |

 xmlstarlet sel t v "(html/body/ul/li[count(p)>0])[$RANDOM mod last()+1]" |

 xmlstarlet unesc | fmt 80

 }

• expr : perform arithmetic or boolean operations or evaluate regular expressions

• m4 : simple macro processor

• screen : powerful terminal multiplexing and session persistence

• yes : print a string a lot

• cal : nice calendar

• env : run a command (useful in scripts)

• look : find English words (or lines in a file) beginning with a string

• cut and paste and join : data manipulation

• fmt : format text paragraphs

• pr : format text into pages/columns

• fold : wrap lines of text

• column : format text into columns or tables

• expand and unexpand : convert between tabs and spaces

• nl : add line numbers

• seq : print numbers

• bc : calculator

• factor : factor integers

• gpg : encrypt and sign files

• toe : table of terminfo entries

• nc : network debugging and data transfer

• ngrep : grep for the network layer

• dd : moving data between files or devices

• file : identify type of a file

• stat : file info

• tac : print files in reverse

• shuf : random selection of lines from a file

• comm : compare sorted files line by line

• hd and bvi : dump or edit binary files

• strings : extract text from binary files

• tr : character translation or manipulation

Obscure but useful

Pagina 7 di 9jlevy/the-art-of-command-line · GitHub

19/06/2015file:///C:/Users/luskin/AppData/Local/Temp/Low/LE9UMVSQ.htm

• iconv or uconv: conversion for text encodings

• split and csplit : splitting files

• 7z : high-ratio file compression

• ldd : dynamic library info

• nm : symbols from object files

• ab : benchmarking web servers

• strace : system call debugging

• mtr : better traceroute for network debugging

• cssh : visual concurrent shell

• wireshark and tshark : packet capture and network debugging

• host and dig : DNS lookups

• lsof : process file descriptor and socket info

• dstat : useful system stats

• glances : high level, multi-subsystem overview

• iostat : CPU and disk usage stats

• htop : improved version of top

• last : login history

• w : who's logged on

• id : user/group identity info

• sar : historic system stats

• iftop or nethogs : network utilization by socket or process

• ss : socket statistics

• dmesg : boot and system error messages

• hdparm : SATA/ATA disk manipulation/performance

• lsb_release : Linux distribution info

• lshw : hardware information

• fortune , ddate , and sl : um, well, it depends on whether you consider steam locomotives and

Zippy quotations "useful"

• awesome-shell: A curated list of shell tools and resources.

• Strict mode for writing better shell scripts.

With the exception of very small tasks, code is written so others can read it. With power comes

responsibility. The fact you can do something in Bash doesn't necessarily mean you should! ;)

More resources

Disclaimer

Pagina 8 di 9jlevy/the-art-of-command-line · GitHub

19/06/2015file:///C:/Users/luskin/AppData/Local/Temp/Low/LE9UMVSQ.htm

Status API Training Shop Blog About Help© 2015 GitHub, Inc. Terms Privacy Security Contact

Pagina 9 di 9jlevy/the-art-of-command-line · GitHub

19/06/2015file:///C:/Users/luskin/AppData/Local/Temp/Low/LE9UMVSQ.htm

